Top Important Computer Vision for the Week from 14/8 to 20/8
Stay Relevant to Recent Computer Vision Research
Computer vision, a field of artificial intelligence that enables machines to interpret and understand the visual world, is rapidly evolving with groundbreaking research and technological advancements.
On a weekly basis, several top-tier academic conferences and journals showcased innovative research in computer vision, presenting exciting breakthroughs in various subfields such as image recognition, vision model optimization, generative adversarial networks (GANs), image segmentation, video analysis, and more.
In this article, we will provide a comprehensive overview of the most significant papers published in the third week of August 2023, highlighting the latest research and advancements in computer vision. Whether you’re a researcher, practitioner, or enthusiast, this article will provide valuable insights into the state-of-the-art techniques and tools in computer vision.
Table of contents:
Image Recognition
Video Analysis & Understanding
Image Generation
Image Construction
All the resources and tools you need to teach yourself Data Science for free!
The best interactive roadmaps for Data Science roles. With links to free learning resources. Start here: https://aigents.co/learn/roadmaps/intro
The search engine for Data Science learning recourses. 100K handpicked articles and tutorials. With GPT-powered summaries and explanations. https://aigents.co/learn
Teach yourself Data Science with the help of an AI tutor (powered by GPT-4). https://community.aigents.co/spaces/10362739/
1. Image Recognition
1.1. VisIT-Bench: A Benchmark for Vision-Language Instruction Following Inspired by Real-World Use
We introduce VisIT-Bench (Visual InsTruction Benchmark), a benchmark for the evaluation of instruction-following vision-language models for real-world use. Our starting point is curating 70 ‘instruction families’ that we envision instruction-tuned vision-language models should be able to address.
Extending beyond evaluations like VQAv2 and COCO, tasks range from basic recognition to game-playing and creative generation. Following curation, our dataset comprises 592 test queries, each with a human-authored instruction-conditioned caption. These descriptions surface instruction-specific factors, e.g., for an instruction asking about the accessibility of a storefront for wheelchair users, the instruction-conditioned caption describes ramps/potential obstacles. These descriptions enable 1) collecting human-verified reference outputs for each instance; and 2) automatic evaluation of candidate multimodal generations using a text-only LLM, aligning with human judgment. We quantify quality gaps between models and references using both human and automatic evaluations; e.g., the top-performing instruction-following model wins against the GPT-4 reference in just 27% of the comparisons. VisIT-Bench is dynamic to participate, practitioners simply submit their model’s response on the project website.
2. Video Analysis & Understanding
2.1. CoDeF: Content Deformation Fields for Temporally Consistent Video Processing
We present the content deformation field CoDeF as a new type of video representation, which consists of a canonical content field aggregating the static contents in the entire video and a temporal deformation field recording the transformations from the canonical image (i.e., rendered from the canonical content field) to each individual frame along the time axis. Given a target video, these two fields are jointly optimized to reconstruct it through a carefully tailored rendering pipeline. We advisedly introduce some regularizations into the optimization process, urging the canonical content field to inherit semantics (e.g., the object shape) from the video. With such a design, CoDeF naturally supports lifting image algorithms for video processing, in the sense that one can apply an image algorithm to the canonical image and effortlessly propagate the outcomes to the entire video with the aid of the temporal deformation field. We experimentally show that CoDeF is able to lift image-to-image translation to video-to-video translation and lift keypoint detection to keypoint tracking without any training. More importantly, thanks to our lifting strategy that deploys the algorithms on only one image, we achieve superior cross-frame consistency in processed videos compared to existing video-to-video translation approaches and even manage to track non-rigid objects like water and smog.
2.2. Relightable and Animatable Neural Avatar from Sparse-View Video
This paper tackles the challenge of creating relightable and animatable neural avatars from sparse-view (or even monocular) videos of dynamic humans under unknown illumination. Compared to studio environments, this setting is more practical and accessible but poses an extremely challenging ill-posed problem. Previous neural human reconstruction methods are able to reconstruct animatable avatars from sparse views using deformed Signed Distance Fields (SDF) but cannot recover material parameters for relighting. While differentiable inverse rendering-based methods have succeeded in the material recovery of static objects, it is not straightforward to extend them to dynamic humans as it is computationally intensive to compute pixel-surface intersection and light visibility on deformed SDFs for inverse rendering.
To solve this challenge, we propose a Hierarchical Distance Query (HDQ) algorithm to approximate the world space distances under arbitrary human poses. Specifically, we estimate coarse distances based on a parametric human model and compute fine distances by exploiting the local deformation invariance of SDF. Based on the HDQ algorithm, we leverage sphere tracing to efficiently estimate the surface intersection and light visibility. This allows us to develop the first system to recover animatable and relightable neural avatars from sparse view (or monocular) inputs. Experiments demonstrate that our approach is able to produce superior results compared to state-of-the-art methods. Our code will be released for reproducibility.
3. Image Generation
3.1. IP-Adapter: Text-Compatible Image Prompt Adapter for Text-to-Image Diffusion Models
Recent years have witnessed the strong power of large text-to-image diffusion models for the impressive generative capability to create high-fidelity images. However, it is very tricky to generate desired images using only text prompts as it often involves complex prompt engineering. An alternative to a text prompt is an image prompt, as the saying goes: “an image is worth a thousand words”. Although existing methods of direct fine-tuning from pretrained models are effective, they require large computing resources and are not compatible with other base models, text prompts, and structural controls. In this paper, we present an IP-Adapter, an effective and lightweight adapter to achieve image prompt capability for the pretrained text-to-image diffusion models.
The key design of our IP adapter is a decoupled cross-attention mechanism that separates cross-attention layers for text features and image features. Despite the simplicity of our method, an IP adapter with only 22M parameters can achieve comparable or even better performance to a fully fine-tuned image prompt model. As we freeze the pretrained diffusion model, the proposed IP-Adapter can be generalized not only to other custom models fine-tuned from the same base model, but also to controllable generation using existing controllable tools. With the benefit of the decoupled cross-attention strategy, the image prompt can also work well with the text prompt to achieve multimodal image generation.
3.2. Dual-Stream Diffusion Net for Text-to-Video Generation
With the emerging diffusion models, recently, text-to-video generation has recently aroused increasing attention. But an important bottleneck therein is that generative videos often tend to carry some flickers and artifacts. In this work, we propose a dual-stream diffusion net (DSDN) to improve the consistency of content variations in generating videos.
In particular, the designed two diffusion streams, video content, and motion branches, could not only run separately in their private spaces for producing personalized video variations as well as content but also be well-aligned between the content and motion domains through leveraging our designed cross-transformer interaction module, which would benefit the smoothness of generated videos. Besides, we also introduce a motion decomposer and combiner to facilitate the operation of video motion. Qualitative and quantitative experiments demonstrate that our method could produce amazing continuous videos with fewer flickers.
3.3. DragNUWA: Fine-grained Control in Video Generation by Integrating Text, Image, and Trajectory
Controllable video generation has gained significant attention in recent years. However, two main limitations persist: Firstly, most existing works focus on either text, image, or trajectory-based control, leading to an inability to achieve fine-grained control in videos. Secondly, trajectory control research is still in its early stages, with most experiments being conducted on simple datasets like Human3.6M. This constraint limits the models’ capability to process open-domain images and effectively handle complex curved trajectories.
In this paper, we propose DragNUWA, an open-domain diffusion-based video generation model. To tackle the issue of insufficient control granularity in existing works, we simultaneously introduce text, image, and trajectory information to provide fine-grained control over video content from semantic, spatial, and temporal perspectives. To resolve the problem of limited open-domain trajectory control in current research, We propose trajectory modeling with three aspects: a Trajectory Sampler (TS) to enable open-domain control of arbitrary trajectories, a Multiscale Fusion (MF) to control trajectories in different granularities, and an Adaptive Training (AT) strategy to generate consistent videos following trajectories. Our experiments validate the effectiveness of DragNUWA, demonstrating its superior performance in fine-grained control in video generation.
4. Image Construction
4.1. RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs
Blind face restoration aims at recovering high-quality face images from those with unknown degradations. Current algorithms mainly introduce priors to complement high-quality details and achieve impressive progress. However, most of these algorithms ignore abundant contextual information in the face and its interplay with the priors, leading to sub-optimal performance. Moreover, they pay less attention to the gap between the synthetic and real-world scenarios, limiting the robustness and generalization to real-world applications. In this work, we propose RestoreFormer++, which on the one hand introduces fully spatial attention mechanisms to model the contextual information and the interplay with the priors, and on the other hand, explores an extending degrading model to help generate more realistic degraded face images to alleviate the synthetic-to-real-world gap. Compared with current algorithms, RestoreFormer++ has several crucial benefits.
First, instead of using a multi-head self-attention mechanism like the traditional visual transformer, we introduce multi-head cross-attention over multi-scale features to fully explore spatial interactions between corrupted information and high-quality priors. In this way, it can facilitate RestoreFormer++ to restore face images with higher realness and fidelity. Second, in contrast to the recognition-oriented dictionary, we learn a reconstruction-oriented dictionary as priors, which contains more diverse high-quality facial details and better accords with the restoration target. Third, we introduce an extending degrading model that contains more realistic degraded scenarios for training data synthesizing and thus helps to enhance the robustness and generalization of our RestoreFormer++ model. Extensive experiments show that RestoreFormer++ outperforms state-of-the-art algorithms on both synthetic and real-world datasets.
4.2. TeCH: Text-guided Reconstruction of Lifelike Clothed Humans
Despite recent research advancements in reconstructing clothed humans from a single image, accurately restoring the “unseen regions” with high-level details remains an unsolved challenge that lacks attention. Existing methods often generate overly smooth back-side surfaces with a blurry texture. But how to effectively capture all visual attributes of an individual from a single image, which is sufficient to reconstruct unseen areas (e.g., the back view)? Motivated by the power of foundation models, TeCH reconstructs the 3D human by leveraging 1) descriptive text prompts (e.g., garments, colors, hairstyles) which are automatically generated via a garment parsing model and Visual Question Answering (VQA), 2) a personalized fine-tuned Text-to-Image diffusion model (T2I) which learns the “indescribable” appearance. To represent high-resolution 3D clothed humans at an affordable cost, we propose a hybrid 3D representation based on DMTet, which consists of an explicit body shape grid and an implicit distance field. Guided by the descriptive prompts + personalized T2I diffusion model, the geometry and texture of the 3D humans are optimized through multi-view Score Distillation Sampling (SDS) and reconstruction losses based on the original observation. TeCH produces high-fidelity 3D clothed humans with consistent & delicate texture and detailed full-body geometry. Quantitative and qualitative experiments demonstrate that TeCH outperforms the state-of-the-art methods in terms of reconstruction accuracy and rendering quality.
4.3. SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes
Existing methods for the 4D reconstruction of general, non-rigidly deforming objects focus on novel-view synthesis and neglect correspondences. However, time consistency enables advanced downstream tasks like 3D editing, motion analysis, or virtual-asset creation. We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner. Our dynamic-NeRF method takes multi-view RGB videos and background images from static cameras with known camera parameters as input. It then reconstructs the deformations of an estimated canonical model of the geometry and appearance in an online fashion. Since this canonical model is time-invariant, we obtain correspondences even for long-term, long-range motions. We employ neural scene representations to parametrize the components of our method. Like prior dynamic-NeRF methods, we use a backward deformation model. We find non-trivial adaptations of this model necessary to handle larger motions: We decompose the deformations into a strongly regularized coarse component and a weakly regularized fine component, where the coarse component also extends the deformation field into the space surrounding the object, which enables tracking over time. We show experimentally that, unlike prior work that only handles small motions, our method enables the reconstruction of studio-scale motions.
Looking to start a career in data science and AI do not know how. I offer data science mentoring sessions and long-term career mentoring:
Mentoring sessions: https://lnkd.in/dXeg3KPW
Long-term mentoring: https://lnkd.in/dtdUYBrM
Great work thanks alot